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Abstract
We propose experiments with atomic hydrogen gas at ultra-low temperatures T < 100μK
when the thermal energy of atoms is comparable with the changes of their potential energy
in the Earth gravity field. At these conditions we suggest implementing a gravitational spec-
troscopy for studies of quantum properties of ultra-cold atomic hydrogen and its interactions
with matter and gravity, similar to experiments with ultra-cold neutrons (Nesvizhevsky et al.
Nature 415, 297 2002). A magnetic trap used for reaching the Bose-Einstein Condensation
(Fried et al. Phys. Rev. Lett. 81, 3811 1998) can be used for cooling a large number of H
atoms below 1 mK. Evaporative cooling over the trap barrier allows effective cooling of
the vertical degree of freedom of the trapped atoms. Releasing these ultra-slow atoms from
the trap onto the cold surface of superfluid helium will allow studies of quantum bounces
and stationary gravitational states of H atoms in the potential well created by this surface
and the field of Earth gravity. Experimental study of properties of gravitational quantum
states of hydrogen and quantum reflection of ultracold hydrogen from surface would be of
major importance for designing similar experiments with antihydrogen, which are currently
prepared in CERN.
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1 Introduction

The quantum properties of matter are usually studied in the microscopic world and under
the extreme conditions of ultralow temperatures, or slow atomic motion. Perhaps the most
known quantum phenomenon observed under these conditions is the Bose-Einstein Con-
densation (BEC). The appearance of the condensate is associated with a drastic change of
macroscopic properties of the gaseous cloud. Most spectacular is the phenomenon of super-
fluidity and presence of quantized vortices. Nowadays BECs of alkali atoms are studied in
many laboratories, owing to a remarkable progress in this field since the experiments of E.
Cornell, K.Wieman [3], andW. Ketterle [4] in 1995. Most of the experimental methods used
to create condensates of alkali vapours were originally invented and tested on hydrogen. A
study of properties of H was always of prime importance because they can be calculated
from the first principles. Therefore, as the element number one, H has often served as a test
probe of the fundamental laws of physics. BEC was achieved in the gas of atomic hydrogen
by the group of D. Kleppner at MIT [2], and in the two-dimensional H gas at the University
of Turku [5] in 1998.

Unification of quantum mechanics with the theory of gravity remains one of the unre-
solved problems in the modern theories, and experimental investigation of the gravitational
properties of quantum mechanical objects, such as light neutral atoms or elementary par-
ticles, is of great importance. Experiments with gravitational states of ultracold neutrons
opened a new way for studies of fundamental properties of matter and gravity [1], and
similar experiments are suggested for atomic hydrogen and antihydrogen [6].

In this paper, we propose to implement a gravitational spectroscopy for studies of quan-
tum properties of ultra-cold atomic hydrogen and its interactions with matter and gravity.
We are going to build a magnetic trap for cooling a large number of H atoms below 1 mK.
We will release ultra-slow atoms from the trap onto the cold surface of superfluid helium.
Owing to the weakest interaction potential such surface provides nearly perfect reflecting
conditions for low-energy atoms. This will allow studies of quantum bounces and stationary
gravitational states of H atoms in the potential well created by this surface and the field of
Earth gravity. The methods and ideas of this project will be useful for making similar exper-
iments with antihydrogen utilizing a new source and trap for anti-H currently prepared in
CERN [7–10].

2 Background

Research work on cooling neutral gases was at first concentrated on reaching BEC for
the lightest possible atom — atomic hydrogen. Atomic hydrogen gas is metastable against
recombination into molecules, and in order to prevent this one should polarize its electron
spin. This can be done by the brute force, applying high magnetic fields at low tempera-
tures, when the thermal energy becomes much smaller than the Zeeman interaction with the
magnetic field. Technically reaching these conditions was fairly easy already in the middle
of the previous century, routine dilution refrigerator could reach temperatures below 0.1 K,
and simple superconducting magnet could create strong enough magnetic fields of several
T. The atoms with the electron spins directed opposite to the polarising magnetic field (high
field seekers) collect in the region of strong magnetic field and can be accumulated there
at high density. However, another problem arose: Van der Waals interaction with any phys-
ical wall is so strong that cooling a gas of H inside a container leads to its condensation
(adsorption) on the walls with subsequent depolarization of electron spin and recombination
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already at temperatures of the order of 10 K. At this stage, researchers came across with the
problem of finding material with the weakest possible interaction with H atoms. It turned
out that such material is liquid helium, and owing to its superfluidity one may cover all
surface of the container by a superfluid helium film. This led the first stabilization of cold
atomic hydrogen gas in the pioneering experiments of I. Silvera and J. Walraven at the Uni-
versity of Amsterdam in 1979 [11] at the temperature of 270 mK and density of the order
of n ∼ 1014 cm−3.

Subsequent experiments confirmed that H has relatively weak attractive interaction with
helium surface. The shallow potential well supports only one bound state with an adsorption
energy of ∼1 K. Improvements in the experimental technique allowed compression of H
gas to densities of the order of 5×1018 cm−3, but this was still quite far from conditions
required for BEC. At so high densities, phase space compression was limited by the three-
body recombination. Adsorption on the walls and subsequent surface recombination limited
cooling to BEC at low densities. Thus, by the middle of 1980, it became clear that one cannot
reach quantum degeneracy in three-dimensional H gas confined by the material walls.

In 1986 Harald Hess suggested another way for reaching BEC in atomic hydrogen [12].
He proposed to build a magnetic trap where the wall-free confinement is provided by mag-
netic forces. It is not possible to create a magnetic field configuration with magnetic field
maximum in the current-free space, but a local minimum can be created in a configuration of
currents known as the Ioffe-Pritchard trap. The atoms with the direction of the electron spin
along magnetic field are attracted to the minimum of the magnetic field. These, so-called
low field seekers, can be trapped in magnetic traps. Hess suggested a method of cooling
the trapped atoms by evaporation of the hottest atoms over the trap barrier with subsequent
thermalization of remaining gas due to interatomic collisions. This proposal opened a new
way for cooling the atoms, and experiments were immediately initiated by D. Kleppner and
T. Greytak in MIT and by J. Walraven in the University of Amsterdam. Their efforts led
to the successful BEC experiment with H in 1998 [2], which was however three years later
than it was done for the alkali atoms of 87Rb [3, 4].

Interaction of H atoms with helium surface and adsorbed two-dimensional phase of
H concerns rather interesting physics and deserved special studies. The surface of liquid
helium is the best possible surface for experiments at ultralow energies [13]. It is extremely
pure, ideally flat and atomically smooth. The surface excitations – ripplons completely van-
ish at 100 mK which greatly simplifies analysis. Calculation of the H-liquid He interaction
potential seems to be fairly simple since we deal with the simplest and lightest atoms. How-
ever, here we again come to the situation that our intuitive prediction based on the classical
treatment gives a wrong result. While a classical analysis reveals that the sticking prob-
ability s in the collisions of low-energy atoms approaches unity at low temperatures, the
quantum treatment predicts that it should follow universal

√
T dependence and approach

zero at T = 0. The reason for such behaviour at low temperatures is the absence of surface
excitations, which ensure the energy and momentum conservation after adsorption of the
atom in the surface potential well.

The quantum behaviour of the reflection was observed in experiments of Amsterdam
group as the enhanced capillary flow of H atoms [14] and focusing of the atomic beam with
a concave mirror [15]. In this work, a linear decrease of the sticking probability with tem-
perature was observed which contradicted the theoretical predictions. In later experiments
of MIT group [16], the atoms were cooled to much lower temperatures in the magnetic
trap and released on to the surface of superfluid helium. Expected

√
T dependence was
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confirmed in these experiments, but the value of the sticking probability was substan-
tially higher than those measured by the Amsterdam group. A possible source of error in
the MIT work is the poor accuracy of the film thickness measurement. It seems that the
influence of metallic substrate was not completely eliminated. We expect that the sticking
probability of H will approach s=0.001 at 100 μK for collisions with really thick films or
bulk helium. This vanishing sticking probability at low energies is very important for the
proposed experiments.

3 Proposed experiments

Cooling H atoms to lowest possible energies is a somewhat different task from reaching
BEC conditions. In the latter task, one should compress the gas in the phase space, keeping
high density of atoms at lowest possible temperature. Collisions between the atoms should
establish thermal equilibrium which is continuously disturbed by the evaporative cooling,
when the hottest atoms are kicked out from the trap. Owing to the very small size of H, the
collision cross section is very small, and to provide high enough equilibration rate one has to
keep the gas at sufficiently high density. In the MIT experiments [2] densities approaching
5×1015 were reached that is an order of magnitude larger than in typical BEC experiments
with other alkali vapours. Even at that high densities it turned out to be impossible to reach
full thermal equilibrium, and the axial and radial motion of the atoms were essentially
decoupled. Another serious problem arose at high densities from the two-body collisions of
atoms, which lead to the spin flips caused by the dipolar interaction of the colliding atoms.
The atoms with the flipped spin are immediately pushed out from the trap. This process of
dipolar relaxation occurs mainly near the bottom of the trap where the atoms are having
lowest kinetic energy, and leads to effective heating of the gas.

The rate of dipolar relaxation may be strongly reduced at lower densities, since this is a
two-body process and its rate if proportional to n2. At densities below 1013 cm−3 lifetime
of the sample in the MIT trap, limited by the dipolar relaxation, would be several hours, and
this process will not lead to a significant heating of the gas. The thermalization rate of the
gas is proportional to the collision rate and also decreases at lower densities, which makes
more difficult reaching thermal equilibrium in the gas. The evaporative cooling becomes
slow and inefficient, leading to decoupling of radial and axial motion of the atoms and
strong departure from thermal equilibrium [17, 18]. However, equilibrium is not necessary
for the gravitational spectroscopy experiments, and therefore we will follow a different
pathway in the phase space than was used in the MIT experiment. We will be aiming at
slowing axial (vertical) motion of the atoms to energies comparable with their potential in
the field of gravity.

A second feature of the quantum reflections which we are going to use is the vanish-
ing sticking probability at low energies. Releasing low energy atoms into a container with
helium covered walls will lead to an enhanced adsorption of the highest energy atoms, and
lead to an ”absorptive” cooling, in this sense similar to the evaporation over the magnetic
trap barrier. What is important is that this process does not require collisions of the atoms
with each other, and the dipolar relaxation is ruled out of the game.

These two basic features can be effectively used in two types of experiments: 1) with
a beam of low energy atoms, similar to the experiments with ultra-cold neutrons [1], and
2) trapping the ultra-low energy atoms in a static trap having bulk superfluid helium at the
bottom. We describe both proposed experiments in more details in the following sections.
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Fig. 1 Schematic diagram of the experimental setup for the beam type experiment to detect gravitational
states of ultra-cold H on liquid helium surface

In both cases, we suggest to use a magnetic trap of the Ioffe-Pritchard type (IPT), similar
to that proposed by Hess [12] and used by the MIT group [18, 19]. The trap axis is aligned
vertically, as depicted in Fig. 1. Increasing the volume of the trap and changing the radial
trapping geometry from quadrupole to octupole will allow trapping at least an order of
magnitude larger number of atoms than in MIT work. One may load the trap with N >

1015 atoms at temperature of T ∼ 50 mK. Then, using a forced evaporative cooling along
vertical axis, the temperature of the gas is lowered to T = 1mK with N ∼ 3 × 1013 and
density of the gas n ∼ 1013 cm−3. Using lower densities on the cooling path helps saving
number of atoms. At this conditions the atoms are still in thermal equilibrium with average
velocity of ≈ 5 m/s. Continuing decrease of the axial barrier leads to decoupling of axial
and radial motion [17, 18], rate of the gas thermalization drops and evaporative cooling
becomes inefficient. Further decrease of the vertical velocity vz may be done by truncation
in the velocity space, quickly ramping down the axial barrier and removing atoms with
energies larger than its final height. A decrease of one velocity component by the factor of
30 will require a reduction of the number of atoms by same number. Thus we will arrive to
the trapped number of ∼ 1012 atoms of H gas at density of 1011 −1012 cm−3, with the axial
velocity ∼ 15 cm/s and its radial component of ∼ 5 m/s.

3.1 Beam type

A scheme of the proposed experiment is shown in Fig. 1. At the bottom of the trap, we
suggest to arrange a chamber with the free surface of liquid helium and an absorber plate
hanging above it with the variable distance of 10-100 μm to the helium surface. The gap
between the adsorbed and helium surfaces is adjusted with cryogenic nanopositioners [20].
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The absorber is hanged with thin superconducting wires, which provide thermal insulation,
allow heating it to 0.5 K, and evaporating helium film from it. The lower surface of absorber
may be covered with carbon-based paint to increase adsorption properties of H. At the
bottom of the spectrometer chamber around the axis of the trap, one more pinch coil is
arranged with nearly same parameters as the lower pinch solenoid of the trap. Running
current of opposite direction in these two lower pinch coils will create another trapping
configuration with the region of zero field which can be adjusted in the vertical direction by
changing currents in the coils. Manipulating with these currents one can transfer the cloud
of cold atoms down to the surface of liquid helium. One cannot simply drop the cloud few
cm down by switching off the lower pinch field. The atoms would gain energy several times
larger than what we ultimately reach for their vertical velocities. After bringing the cloud to
the surface all magnetic fields are reduced to zero. The rate of the field change will define
the flux of the atoms into the gap below absorber, and finally to the detector. Release of
atoms cannot be very fast because of the eddy current heating, but we think that within a
minimum time of ∼10 sec this can be done. Fortunately, magnetic field strength is rather
small ∼ 10 G in the end of the evaporative cooling, and the rate of the field ramp ∼ 1
G/s, two orders of magnitudes smaller than in MIT experiments, should not be a problem.
The cloud will expand in the radial direction and the atoms will start to collide with the
surface of parabolic mirror arranged around the axis of the traps. The position of the mirror
focus is adjusted with nano-positioner to match the cloud center, so that the atoms moving
in radial direction will be reflected in the form of a parallel beam. The cloud will expand in
the radial direction and the atoms will start colliding with the surface of a parabolic mirror
arranged around the axis of the traps. The position of the mirror focus is adjusted with nano-
positioner to match the cloud center, so that the atoms moving in radial direction will be
reflected in the form of a parallel beam.

The absorber will make a further selection of the atoms with smallest vertical velocities.
The atoms having energy larger than the gravitational energy on the gap height will be cap-
tured on it’s surface. The atoms passing between the surface of helium and absorber will
settle in the gravitational states and the transmission of the beam may be measured as a
function of the gap height, as it was done in the experiments with ultra-cold neutrons at ILL
[1]. In order to increase the spatial resolution of the gravitational states, we propose to use
the method realized by Ishikawa in experiments with UCN at ILL [21, 22]. The cylindrical
rod is placed at the end of the atomic beam passing through the gap. With the full specular
reflection of incident particles, it works as a convex lens, and the spatial distribution of the
atomic beam is effectively magnified by the factor of 25. The atoms reflected from the rod
reach the detector, which will provide a measurement of the beam intensity as a function of
the position in the horizontal plane. Clearly, in such experiment, most of the atoms initially
collected in the trap will be lost and will not pass through the gap. Gravitational states will
be resolved by varying the height of the gap within the range 10-100 μm (∼15 lowest states
[1]), which implies truncation in the vertical velocity by the factor of 3-10 and correspond-
ing loss of atoms. The number of atoms entering the slot in the box with the bolometer will
be further reduced by the factor 102-103 defined by the desired resolution and collection
angle of the detection system dependent of the final geometry. Considering other possible
losses (sticking and scattering of the atoms, imperfect focusing) we make a conservative
estimate of the total loss as 4-5 orders of magnitude from the number initially prepared in
the IPT. However, even after that one will get 107-108 atoms, which can be released dur-
ing adjustable time. Sensitivity of the bolometer to detect recombination of ∼ 106 atoms/s
demonstrated in MIT work [18, 19], seems to be good enough for detection of the flux of
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Fig. 2 Scheme of the stationary trap for experiments with fravitational states of hydrogen atoms

atoms passing through the gap and entering the gap of the box with the detector if they are
released from the trap within several tens of seconds.

3.2 Static trap

A scheme of this experiment is shown in Fig. 2. The same trapping and cooling scenario
will be used to obtain initial cloud of atoms. Similar to the beam experiment, one more
pinch coil is arranged below the main Ioffe-Pritchard trap. After the initial stage of trapping
and evaporative cooling, the atomic cloud with the starting parameters as described above
is slowly transferred into a cylindrical beaker or piece of a glass tube with the walls sticking
slightly above the surface of helium. In the beginning, the height of these physical walls
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will be 2-3 cm, several times larger than the kinetic energy of atoms in the vertical direction.
The gas will occupy the lower part of the beaker. Then, evaporative cooling above the wall
will start to reduce the vertical velocity of the atoms. The cooling rate will be adjusted by
lowering the beaker into the bulk helium. Finally, at the height of < 0.1 mm the flux of
escaping atoms will depend on the proximity of the gravitational states. The changes in the
flux of atoms escaping from such a trap will be detected by a bolometer attached to the
cylindrical wall of the sample cell. In addition to the escape above the trap wall, the atoms
will be lost due to inelastic collisions with the surface of liquid helium. We expect that
this will be the main loss mechanism. However, since the sticking probability increases for
larger velocities, this will remove most energetic atoms, and will lead to an effective cooling
of the horizontal component. We estimate that at the horizontal velocity of 4 m/s and 4 cm
diameter of the beaker the mean flight time is 10−2 s. With the sticking probability of 10−2

at T=1 mK [16], the decay time of such hot atoms would be about 1 s, if the reflection is
specular enough. The decay will slow down as the high-energy atoms will disappear from
the gas. Non-specular collisions with the walls and with the meniscus of helium near the
trap bottom will lead to a mixing of all velocity components. To estimate the final number
of atoms distributed in 5-10 lowest gravitational states in the trap of ∼0.1 mm height we
assume that their energies will be cut above the height of the gravitational potential barrier
∼ 0.1μK corresponding to the thermal velocity of v ∼ 5cm/s. This will require factor of 3
reduction in vertical and factors of 100 in both horizontal components, leading in total to a
reduction of 3·4 in number of atoms from initially prepared in IPT. Finally we may expect
3 · 107 atoms with thermal energies of 0.1 μK. The rate of the sticking collisions with the
walls and bottom of the beaker can be estimated as dN/dt ∼ nvAs/4 ≈ 2 · 105 s−1, where
n ≈ 4 · 108 cm−3 is the gas density, A ≈ 13 cm2 is the total area of trap (beaker) surface,
s ∼ 3·10−5 is the sticking probability at 0.1μK (we assume a square-root reduction of s with
temperature [19]). The lifetime of such ensemble of N ∼ 3 · 107 atoms will be of the order
of several minutes. The energy levels will be well resolved and transitions between them
can be excited via vibrations of the beaker by the piezo positioner. Exciting the transitions
into the levels above the trap wall will lead to increased recombination rate, which can be
analyzed using a bolometer. It is very important to have the initial temperature of the gas
cloud before its transfer into the gravitational trap as low as possible.

3.3 Diagnostic tools

At the first stage of experiments in MIT, the H atoms were detected by the calorimetrical
method. A sensitive carbon bolometer was used to measure heat liberated in atomic recom-
bination. The sensitivity of their device was equivalent to 106 atoms/s. Much more sensitive
bolometers were developed since that time. Most sensitive are so-called Transition Edge
Sensor (TES) [23]. They utilize steep dependence of the resistance of metals at the edge of
the superconductor/normal transition. SQUIDs are typically used for the measurement of
the resistance change. TES are commonly used in radio astronomy. They reach sensitivity
sufficient for detection of a single infrared photon. The arrays of such sensors are devel-
oped, which can measure the spatial distribution of the energy flux, like a CCD of a camera.
We suggest to place TES inside a small chamber with a slit for incident atoms. The TES
will be weakly coupled to the chamber wall and heated slightly above ambient temperature
to evaporate helium film from its surface. All incident atoms will adsorb on TES surface
and recombine. We expect that such detector will be able to detect atomic fluxes of the
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order of 102-103 atoms/s, implying 3-4 orders improvement compared to MIT work. Opti-
cal diagnostics via the 1S-2S two-photon transition [24, 25] is another option, which would
be certainly beneficial and would allow verifying many properties of ultra-cold H gas.

4 Conclusions

We suggested two configurations of experiments with ultra-slow atoms of atomic hydrogen
with the energies comparable with their gravitational potential on the height of a fraction of
1 mm. At the first stage of this project, studies of quantum reflection of these atoms from
the surface of superfluid helium will allow further insights into the physics of interactions
of atoms with surfaces in the ultra-low energy regime and quantitative measurements of
van der Waals/Casimir-Polder forces. This information is of major importance for designing
similar experiments with anti-hydrogen atoms currently pursued in CERN.

Acknowledgements Open access funding provided by University of Turku (UTU) including Turku Uni-
versity Central Hospital. This work was supported by the Wihuri Foundation and grant of the Academy of
Finland 317141. The authors are grateful to colleagues from GRANIT and GBAR collaborations for useful
and stimulating discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Nesvizhevsky, V.V. et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297
(2002)

2. Fried, D.G. et al.: Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811 (1998)
3. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-

Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)
4. Davis, K.B., Mewes, M.O., Andrews, M.R., Van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.:

Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)
5. Safonov, A. et al.: Observation of quasicondensate in two-dimensional atomic hydrogen. Phys. Rev. Lett.

81, 4545.4548 (1998)
6. Voronin, A.Y., Froelich, P., Nesvizhevsky, V.V.: Gravitational quantum states of antihydrogen. Phys.

Rev. A 83, 032903 (2011)
7. Kellerbauer, A. et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instr.

Meth. B. 266, 351 (2008)
8. Charman, A. et al.: Description and first application of a new technique to measure the gravitational

mass of antihydrogen. Nature Commun. 4, 1785 (2013)
9. Indelicato, P. et al.: The Gbar project, or how does antimatter fall? Hyperf. Int. 228, 141 (2014)
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